
Chapter

III-14
III-14Controls and Control Panels

Overview.. 367
Modes of Operation... 367

Using Controls .. 368
Buttons .. 368
Charts... 368
Checkboxes .. 369
CustomControl .. 369
GroupBox ... 369
ListBox .. 369
Pop-Up Menus .. 369
SetVariable ... 370

SetVariable Controls and Data Folders ... 370
Sliders ... 371
TabControl ... 371
TitleBox ... 371
ValDisplays .. 371

Creating Controls ... 372
General Command Syntax ... 373
Creating Button Controls.. 373

Button Example .. 374
Custom Button Control Example .. 375

Creating Chart Controls.. 376
Creating Checkbox Controls .. 376
Creating Custom Controls ... 377
Creating GroupBox Controls ... 379
Creating ListBox Controls .. 379
Creating PopupMenu Controls ... 379
Creating SetVariable Controls ... 381
Creating Slider Controls ... 382
Creating TabControl Controls ... 383
Creating TitleBox Controls ... 384
Creating ValDisplay Controls.. 385

Numeric Readout Only.. 385
LED Display .. 385
Bar Only ... 386
Numeric Readout and Bar... 386
Optional Limits ... 386
Optional Title .. 386

Killing Controls ... 387
Getting Information About Controls ... 387
Updating Controls .. 387
Help Text for User-Defined Controls... 387
Modifying Controls .. 387
Disabling and Hiding Controls... 388

Chapter III-14 — Controls and Control Panels

III-366

Control Background Color .. 388
Control Structures... 388

Control Structure Example... 389
Control Structure eventMod Field .. 390
Control Structure blockReentry Field... 390
Control Structure blockReentry Advanced Example ... 391

User Data for Controls ... 391
Control User Data Examples.. 392

Action Procedures for Multiple Controls .. 392
Controls in Graphs.. 392

Drawing Limitations ... 394
Updating Problems.. 394

Control Panels ... 394
Embedding into Control Panels .. 394
Exterior Control Panels ... 394
Floating Control Panels... 395

Control Panel Preferences.. 395
Controls Shortcuts... 396

Chapter III-14 — Controls and Control Panels

III-367

Overview
We use the term controls for a number of user-programmable objects that can be employed by Igor program-
mers to create a graphical user interface for Igor users. We call them controls even though some of the objects
only display values. The term widgets is sometimes used by other application programs.

Here is a summary of the types of controls available.

The programmer can specify a procedure to be called when the user clicks on or types into a control. This
is called the control’s action procedure. For example, the action procedure for a button may interrogate values
in PopupMenu, Checkbox, and SetVariable controls and then perform some action.

Control panels are simple windows that contain these controls. These windows have no other purpose. You
can also place controls in graph windows and in panel panes embedded into graphs. Controls are not
available in any other window type such as tables, notebooks, or layouts. When used in graphs, controls are
not considered part of the presentation and thus are not included when a graph is printed or exported.

Nonprogrammers will want to skim only the Modes of Operation and Using Controls sections, and skip the
remainder of the chapter. Igor programmers should study the entire chapter.

Modes of Operation
With respect to controls, there are two modes of operation: one mode to use the control and another to
modify it. To see this, choose Show Tools from the Graph or Panel menu. Two icons will appear in the top-
left corner window. When the top icon is selected, you are able to use the controls. When the next icon is
selected, the draw tool palette appears below the second icon. To modify the control, select the arrow tool
from the draw tool palette.

When the top icon is selected or when the icons are hidden, you are in the use or operate mode. You can
momentarily switch to the modify or draw mode by pressing Command-Option (Macintosh) or Ctrl+Alt (Win-
dows). Use this to drag or resize a control as well as to double-click it. Double-clicking with the Command-
Option (Macintosh) or Ctrl+Alt (Windows) pressed brings up a dialog that you use to modify the control.

Control Type Control Description

Button Calls a procedure that the programmer has written.

Chart Emulates a mechanical chart recorder. Charts can be used to monitor data acquisition
processes or to examine a long data record. Programming a chart is quite involved.

CheckBox Sets an off/on value for use by the programmer’s procedures.

CustomControl Custom control type. Completely specified and modified by the programmer.

GroupBox An organizational element. Groups controls with a box or line.

ListBox Lists items for viewing or selecting.

PopupMenu Used by the user to choose a value for use by the programmer’s procedures.

SetVariable Sets and displays a numeric or string global variable. The user can set the variable by
clicking or typing. For numeric variables, the control can include up/down buttons for
incrementing/decrementing the value stored in the variable.

Slider Duplicates the behavior of a mechanical slider. Selects either discrete or continuous values.

TabControl Selects between groups of controls in complex panels.

TitleBox An organizational element. Provides explanatory text or message.

ValDisplay Presents a readout of a numeric expression which usually references a global variable.
The readout can be in the form of numeric text or a thermometer bar or both.

Chapter III-14 — Controls and Control Panels

III-368

You can also switch to modify mode by choosing an item from the Select Control submenu of the Graph or
Panel menu.

Important:To enable the Add Controls submenu in the Graph and Panel menus, you must be in modify
mode; either by clicking the second icon or by pressing Command-Option (Macintosh) or the
Ctrl+Alt (Windows) while choosing the Add Controls submenu.

Using Controls
The following panel window illustrates most of the control types.

Buttons
When you click a button, it runs whatever procedure the programmer may have specified.

If nothing happens when you click a button, then there is no procedure assigned to the button. If the pro-
cedure window(s) haven’t been compiled, clicking a button that has an assigned procedure will produce an
error dialog.

You should choose Compile from the Macros menu to correct this sit-
uation. If no error occurs then the button will now be functional.

Buttons usually have a rounded appearance, but a programmer can
assign a custom picture so that the button can have nearly any appear-
ance.

Charts
Chart controls can be used to emulate a mechanical chart recorder that writes on paper with moving pens
as the paper scrolls by under the pens. Charts can be used to monitor data acquisition processes or to
examine a long data record.

Pop-Up Menus

Checkbox

Button

SetVariables

Value displays

Slider
GroupBox

GroupBox

TitleBox

Chapter III-14 — Controls and Control Panels

III-369

For further discussion of using chart controls, see Using Chart Recorder Controls on page IV-296.

Although programming a chart is quite involved, using a chart is actually very easy. See FIFOs and Charts
on page IV-291 for details.

Checkboxes
Clicking a checkbox changes its selected state and may run a procedure if the program-
mer specified one. A checkbox may be connected to a global variable. Checkboxes can
be configured to look and behave like radio buttons.

CustomControl
CustomControls are used to create completely new types of controls that are custom-made by the program-
mer. You can define and control the appearance and all aspects of a custom control’s behavior. See Creating
Custom Controls on page III-377 for examples.

GroupBox
GroupBox controls are organizational or decorative elements. They are used
to graphically group sets of controls. They may either draw a box or a sepa-
rator line and can have optional titles.

ListBox
ListBox controls can present a single or multiple column list of items for viewing or selection. ListBoxes can
be configured for a variety of selection modes. Items in the list can be made editable and can be configured
as checkboxes.

Pop-Up Menus
These controls come in two forms: one where the current item is shown in the pop-up menu box:

Chapter III-14 — Controls and Control Panels

III-370

and another where there is no current item and a title is shown in the box:

The first form is usually used to choose one of many items while the second is used to run one of many com-
mands.

Pop-up menus can also be configured to act like Igor’s color, line style, pattern, or marker pop-up menus.
These always show the current item.

SetVariable
SetVariable controls also can take on a number of forms and can display numeric values. Unlike Value
Display controls that display the value of an expression, SetVariable controls are connected to individual
global variables and can be used to set or change those variables in addition to reading out their current
value. SetVariable controls can also be used with global string variables to display or set short one line
strings. SetVariable controls are automatically updated whenever their associated variables are changed.

When connected to a numeric variable, these controls can optionally have up or down arrows that incre-
ment or decrement the current value of the variable by an amount specified by the programmer. Also, the
programmer can set upper and lower limits for the numeric readouts.

New values for both numeric and string variables can be entered
by directly typing into the control. If you click the control once
you will see a thick border form around the current value.

You can then edit the readout text using the standard techniques including Cut, Copy, and Paste. If you
want to discard changes you have made, press Escape. To accept changes, press Return, Enter, or Tab or
click anywhere outside of the control. Tab enters the current value and also takes you to the next control if
any. Shift-Tab is similar but takes you to the previous control if any.

If the control is connected to a numeric variable and the text you have entered can not be converted to a
number then a beep will be emitted when you try to enter the value and no change will be made to the value
of the variable. If the value you are trying to enter exceeds the limits set by the programmer then your value
will be replaced by the nearest limit.

When a numeric control is selected for editing, the Up and Down Arrow keys on the keyboard act like the
up and down buttons on the control.

Changing a value in a SetVariable control may run a procedure if the programmer has specified one.

SetVariable Controls and Data Folders
SetVariable controls remember the data folder in which the variable exists, and continue to function prop-
erly when the current data folder is different than the controlled variable. See SetVariable on page III-370.

The system variables (K0 through K19) belong to no particular data folder (they are available from any data
folder), and there is only one copy of these variables. If you create a SetVariable controlling K0 while the
current data folder is “aFolder”, and another SetVariable controlling K0 while the current data folder is
“bFolder”, they are actually controlling the same K0.

Chapter III-14 — Controls and Control Panels

III-371

Sliders
Slider controls can be used to graphically select either discrete or contin-
uous values. When used to select discrete values, a slider is similar to a
pop-up menu or a set of radio buttons. Sliders can be live, updating a
variable or running a procedure as the user drags the slider, or they can
be configured to wait until the user finishes before performing any action.

TabControl
TabControls are used to create complex panels containing many more controls than would otherwise fit.
When the user clicks on a tab, the programmers procedure runs and hides the previous set of controls while
showing the new set.

TitleBox
TitleBox controls are mainly decorative elements. They are used
provide explanatory text in a control panel. They may also be
used to display textual results. The text can be unchanging, or
can be the contents of a global string variable. In either case, the
user can’t inadvertently change the text.

ValDisplays
ValDisplay controls display numeric or string values in a variety of forms ranging from a simple numeric
readout to a thermometer bar. Regardless of the form, ValDisplays are just readouts. There is no interaction
with the user. They display the current value of whatever expression the programmer specified. Often this
will be just the value of a numeric variable, but it can be any numeric expression including calls to user-
defined functions and external functions.

Here is a sampling of the forms that ValDisplay controls can assume.

When a thermometer bar is shown, the left edge of the thermometer region represents a low limit set by the
programmer while the right edge represents a high limit. The low and high limits appear in some of the
above examples. The bar is drawn from a nominal value set by the programmer and will be red if the
current value exceeds the nominal value and will be blue if it is less than the nominal value. In the above

Chapter III-14 — Controls and Control Panels

III-372

examples the nominal value is 60. There is no numeric indication of the nominal value. If the nominal value
is less than the low limit then the bar will grow from the left to the right. If the nominal value is greater than
the high limit then the bar will grow from the right to the left.

If you carefully observe a thermometer bar that is connected to an expression whose value is slowly chang-
ing with time you will see that the bar is drawn in a zig-zag fashion. This provides a much finer resolution
than if the bar were to be extended or contracted by an entire column of screen pixels at once.

Creating Controls
The ease of creating the various controls varies widely. Anyone capable of writing a simple procedure can
create buttons and checkboxes, but creating charts and custom controls requires more expertise. Most con-
trols can be created and modified using dialogs that you invoke via the Add Controls submenu in the Graph
or Panel menu.

The Add Controls and Select Control menus are enabled only when the arrow tool in the tool palette is
selected. To do this, choose Show Tools from the Graph or Panel menu and then click the second icon from
the top in the graph or panel tool palette.

You can temporarily use the arrow tool without the tool palette showing by pressing Command-Option
(Macintosh) or Ctrl+Alt (Windows). While you press these keys, the normally-disabled Add Controls and
Select Control submenus are enabled.

When you click a control with the arrow tool, small handles are drawn that allow you to resize the control.
Note that some controls can not be resized in this way and some can only be resized in one dimension. You
will know this when you try to resize a control and it doesn’t budge. You can also use the arrow tool to repo-
sition a control. You can select a control by name with the Select Control submenu in the Graph or Panel menu.

With the arrow tool, you can double-click most controls to get a dialog that modifies or duplicates the con-
trol. Charts and CustomControls do not have dialog support.

When you right-click (Windows) or Control-click (Macintosh) a control, you get a contextual menu that varies
depending on the type of control.

You can select multiple controls, mix selections with drawing objects, and perform operations such as
move, cut, copy, paste, delete, and align. These operations are undoable. You can’t group buttons or use
Send to Back as you can with drawing objects.

In panels, when you do a Select All, the selectin includes all controls and drawing objects, but in the case of
graphs, only drawing objects are selected. This is because drawing objects in graphs are used for presenta-
tion graphics whereas in panels they are used to construct the user interface.

If you want to copy controls from one window to another, simply use the Edit menu to copy and paste. You
can also duplicate controls using copy and paste.

When you copy controls to the clipboard, the command and control names are also copied as text. This is
handy for programming.

Press Option (Macintosh) or Alt (Windows) while choosing Edit-Copy to copy the complete commands for
creating the copied controls.

If you copy a control from the extreme right side or bottom of a window, it may not be visible when you paste
it into a smaller window. Use the smaller window’s Retrieve submenu in the Mover tool palette icon to make
it visible.

Chapter III-14 — Controls and Control Panels

III-373

General Command Syntax
All of the control commands use the following general syntax:
ControlOperation Name [,keyword[=value] [,keyword[=value]]…]

Name is the control’s name. It must be unique among controls in the window containing the control. If Name
is not already in use then a new control is created. If a control with the same name already exists then that
control is modified, so that multiple commands using the same name result in only one control. This is
useful for creating controls that require many keywords.

All keywords are optional. Not all controls accept all keywords, and some controls accept a keyword but
do not actually use the value. The value for a keyword with one control can have a different form from the
value for the same keyword used with a different type of control. See the specific control operation docu-
mentation in Chapter V-1, Igor Reference for details.
Some controls utilize a format keyword to set a format string. The format string can be any printf-style format
that expects a single numeric value. Think of the output as being the result of the following command:
Printf formatString, value_being_displayed

See the printf operation on page V-653 for a discussion of printf format strings. The maximum length of the
format string is 63 bytes. The format is used only for controls that display numeric values.

All of the clickable controls can optionally call a user-defined function when the user releases the mouse
button. We use the term action procedure for such a function. Each control passes one or more parameters to
the action procedure. The dialogs for each control can create a blank user function with the correct param-
eters.

Creating Button Controls
The Button operation (page V-45) creates or modifies a rounded-edge or custom button with the title text
centered in the button. The default font depends on the operating system, but you can change the font, font
size, text color and use annotation-like escape codes (see Annotation Escape Codes on page III-53). The
amount of text does not change the button size, which you can set to what you want.

Here we create a simple button that will just emit a beep when pressed. Start by choosing the Add Button
menu item in the Graph or Panel menu to invoke the Button Control dialog:

Clicking the procedure’s New button brings up a dialog containing a procedure template that you can edit,
rename, and save. Here we started with the standard ButtonControl template, replaced the default name
with MyBeepProc, and added the Beep command:

Chapter III-14 — Controls and Control Panels

III-374

The controls can work with procedures using two formats: the old procedure format used in Igor 3 and 4,
and the “structure-based” format introduced in Igor 5.

Selecting the “Prefer structure-based procedures” checkbox creates new procedure templates using the
structure-based format.

The “Prefer structure-based procedures” checkbox is checked by default because structure-based proce-
dures are recommended for all new code. If you uncheck this checkbox before editing the template, Igor
switches the template to the old procedure format. Use of the old format is discouraged.

Click Help to get help about the Button operation. In the Details section of the help, you can find informa-
tion about the WMButtonAction structure.

The fact that you can create the action procedure for a control in a dialog may lead you to believe that the
procedure is stored with the button. This is not true. The procedure is actually stored in a procedure
window. This way you can use the same action procedure for several controls. The parameters which are
passed to a given procedure can be used to differentiate the individual controls.

For more information on using action procedures, see Control Structures on page III-388, the Button oper-
ation (page V-45), and Using Structures with Windows and Controls on page IV-95.

Button Example
Here is how to make a button whose title alternates between Start and Stop.

Enter the following in the procedure window:
Function MyStartProc()

Print "Start"
End

Function MyStopProc()
Print "Stop"

End

Function StartStopButton(ba) : ButtonControl
STRUCT WMButtonAction &ba

switch(ba.eventCode)
case 2: // Mouse up

if (CmpStr(ba.ctrlName,"bStart") == 0)
Button $ba.ctrlName,title="Stop",rename=bStop
MyStartProc()

else

Chapter III-14 — Controls and Control Panels

III-375

Button $ba.ctrlName,title="Start",rename=bStart
MyStopProc()

endif
break

endswitch

return 0
End

Now execute:
NewPanel
Button bStart,size={50,20},proc=StartStopButton,title="Start"

Custom Button Control Example
You can create custom buttons by following these steps:
1. Using a graphics-editing program, create a picture that shows the button in its normal (“relaxed”)

state, then in the pressed-in state, and then in the disabled state. Each portion of the picture should
be the same size:

If the button blends into the background it will look better if the buttons are created on the background you
will use in the panel. Igor looks at the pixels in the upper left corner, and if they are a light neutral color,
Igor omits those pixels when the button is drawn.

2. Copy the picture to the clipboard.
3. Switch to Igor,choose Misc→Pictures, click Load and then From Clipboard.

4. Click Copy to Clipboard as Proc Picture to create Proc Picture text on the Clipboard.
5. Click Done.
6. Open a procedure window, paste the text, and give a suitable name to the picture:

Chapter III-14 — Controls and Control Panels

III-376

7. Activate an existing control panel or create a new one.
8. If the tool palette is not showing, choose Panel→Show Tools.
9. Choose Panel-Add Control→Add Button to display the Button Control dialog.
10. Locate the Picture setting in the dialog, check the checkbox, and select the proc picture from the pop-

up menu:

11. Locate the Size setting in the dialog and set the appropriate size for the button:

Creating Chart Controls
The Chart operation creates or modifies a chart control. There is no dialog support for chart controls. You
need at least intermediate-level Igor programming skills to create a functional chart control.

For further information, see FIFOs and Charts on page IV-291.

Creating Checkbox Controls
The CheckBox creates or modifies a checkbox or a radio button.

CheckBox controls automatically size themselves in both height and width. They can optionally be con-
nected to a global variable.

For an example of using checkbox controls as radio buttons, see the reference documentation for the Check-
Box operation.

The user-defined action procedure that you will need to write for CheckBoxes must have the following form:

Chapter III-14 — Controls and Control Panels

III-377

Function CheckProc(cba) : CheckBoxControl
STRUCT WMCheckboxAction &cba

switch(cba.eventCode)
case 2: // Mouse up

Variable checked = cba.checked
break

case -1: // Control being killed
break

endswitch

return 0
End

The checked structure member is set to the new checkbox value:; 0 or 1.

You often do not need an action procedure for a checkbox because you can read the state of the checkbox
with the ControlInfo operation.

You can create custom checkboxes by following steps similar to those for custom buttons (see Custom
Button Control Example on page III-375), except that the picture has six states side-by-side instead of three.
The checkbox states are:

Creating Custom Controls
The CustomControl operation creates or modifies a custom control, all aspects of which are completely
defined by the programmer. See the CustomControl operation on page V-114 for a complete description.

The examples in this section are also available in the Custom Controls demo experiment. Choose
File→Example Experiments→Feature Demos 2→Custom Control Demo.

What you can create with a CustomControl can be fairly simple such as this counter that increments when
you click on it.

 Four clicks later:

The following code implements the counter custom control using the kCCE_frame event. In the panel, click
on the number to increment the counter; also try clicking and then dragging outside the control.

static constant kCCE_mouseup= 2
static constant kCCE_frame= 12

Image Order Control State

Left Deselected enabled.

Deselected enabled and clicked down (about to be selected).

Deselected disabled.

Selected enabled.

Selected enabled and clicked down (about to be deselected).

Right Selected disabled.

Chapter III-14 — Controls and Control Panels

III-378

// PNG: width= 280, height= 49
Picture Numbers0to9

ASCII85Begin
M,6r;%14!\!!!!.8Ou6I!!!$:!!!!R#Qau+!00#^OT5@]&TgHDFAm*iFE_/6AH5;7DfQssEc39jTBQ
=U"5QO:5u`*!m@2jnj"La,mA^'a?hQ[Z.[.,Kgd(1o5*(PSO8oS[GX%3u'11dTl)fII/"f-?Jq*no#
Qb>Y+UBKXKHQpQ&qYW88I,Ctm(`:C^]$4<ePf>Y(L\U!R2N7CEAn![N1I+[hTtr.VepqSG4R-;/+$3
IJE.V(>s0B@E@"n"ET+@5J9n_E:qeR_8:Fl?m1=DM;mu.AEj!)]K4CUuCa4T=W)#(SE>uH[A4\;IG/
e]FqJ4u,2`*p=N5sc@qLD5bH89>gIBdF-1i6SF28oH@"3c2m)bDr&,UB$]i]/0bA.=qbR2#\-D9E?O
2>3D>`($p(Kn)F8aF@)LYiXn[h2K):5@^kF?94)j*1Xtq1U2oFZmY.te?0G)EQ%5,RVT-c)DVa+%mP
%+bS*_hN$hC*8uCJuIWqTHJR.U?32`_B)(g_8e#*YXa>=faEdJsF]6iJlrQ@QAX7huJUmXj8:PBTb2
Y:DYf*Sci'Q"3_;@RDQA:A/([2sO8r$hW)\B$XBGASJ:6OpC+GL<FjVfeNm20U<l<9J%cndX3'HP+k
R.IV?U>ns*_;Zt[]6G6"Rb-*'Nm-E8]LXXXo7Ub>A**7Bm5cS*">HbQ&_RhmUe]$iu@T?Cci:e-_`k
sE+H.GRSMT(9to;IZuH`T4%Yt<jF$+W?Yh6Q*_`C4sGig=L@DKoT%.H=#e_H"QEeeBVNTWBSMYr3dj
O=T%d&4kT9#cWPHS>kAG;3=or2(IK*IBF$^qK,+m0NSDK_!+e0#3fAI>HfKa<sk0641u\W@r+Y:$.i
i$grCPR#&6,;+>nTs_IKS6XcYR)A$fJiC6Z_d2S!$R>_ZH+[<p:JI0ub]\BhE(0RP@((KTRTGo;#SY
LT^9;D7X#km%UV20?$RS"FZoIF!(`FY-iL?n$%#o;-Wj(\PaBS6ZRQe@:kC>%ULrhTWLNM=n@fUbRp
SKkLe\kJ)Sd]u7!?pRJk-!XL[/MZX'"n4?a?JIKO0k'KUm1IZ+roB=:Bq'$&E<#$Krp%p,E"4sI>[-
0F#^ff5SN':2fO)LNC?L4(2ga=!aLm8)tVbGAM?L`l^=$D_YP7Z(sOFs)BL5er5G95p3?m%hM^lSr'
*E^O@8=u6hL`L$mPcq!Bl-iHuGA6hiip%`cFjl9>W?'E-&5T%Y.]i2A@1i%p8XJ5[khb:&"JXYSC\r
10Ss8<Ye;S^"Nc0%-DFouAiPQ9OemnR!"sHH$JKt@!"d0E"'M(P%:`p'15_10`!<nVt"TALQ>PF8WL
Z:#f!!!!j78?7R6=>B
ASCII85End

End

Structure CC_CounterInfo
Int32 theCount // current frame of 10 frame sequence of numbers in

EndStructure

Function MyCC_CounterFunc(s)
STRUCT WMCustomControlAction &s

STRUCT CC_CounterInfo info

if(s.eventCode==kCCE_frame)
StructGet/S info,s.userdata
s.curFrame= mod(info.theCount+(s.curFrame!=0),10)

elseif(s.eventCode==kCCE_mouseup)
StructGet/S info,s.userdata
info.theCount= mod(info.theCount+1,10)
StructPut/S info,s.userdata // will be written out to control

endif

return 0
End

Window Panel0() : Panel
PauseUpdate; Silent 1 // building window...
NewPanel /W=(69,93,271,252)
CustomControl cc2,pos={82,46},proc=MyCC_CounterFunc,picture=

{ProcGlobal#Numbers0to9,10}
EndMacro

You can create even more sophisticated controls, such as this voltage meter control.

Choose File→Example Experiments→Feature Demos 2→Custom Control Demo to try this control and see
the code that implements it.

Chapter III-14 — Controls and Control Panels

III-379

Creating GroupBox Controls
The GroupBox operation creates or modifies a listbox control. See the GroupBox operation on page V-289
for a complete description and examples.

Creating ListBox Controls
The ListBox operation creates or modifies a listbox control.

We will illustrate listbox creation by example.

1. Create a panel with a listbox control:
NewPanel
ListBox list0 size={200,60}, mode=1

The simplest functional listbox needs at least one text wave to contain the list items. Without the
text wave, a listbox control has no list items. In this state, the listbox is drawn with a red X over the
control.

2. We need a text wave to contain the list items:
Make/O/T textWave0 = {"first list item", "second list item", "etc..."}

3. Choose Panel→Show Tools.
This puts the panel in edit mode so you can modify controls.

4. Double-click the listbox control to invoke the ListBox Control dialog.
5. For the List Text Wave property, select the wave you created to assign it as the list’s text wave.
6. Click Do It.

You now have a functional listbox control.
7. Click the operate (top) icon, or choose Panel→Hide Tools, so you can use, rather than edit, the list.
In this example, we created a single-selection list. You can query the selection by calling ControlInfo and
checking the V_Value output variable.

See the ListBox for a complete description and further examples.

Right-clicking (Windows) or Control-clicking (Macintosh) a listbox shows a contextual menu with com-
mands for editing the list waves and action procedure, and for creating a numeric selection wave, if the
control is a multi-selection listbox.

Creating PopupMenu Controls
The PopupMenu creates or modifies a pop-up menu control. Pop-up menus are usually used to provide a
choice of text items but can also present colors, line styles, patterns, and markers.

The control automatically sizes itself as a function of the title or the currently selected menu item. You can
specify the bodyWidth keyword to force the body (non-title portion) of the pop-up menu to be a fixed size.
You might do this to get a set of pop-up menus of nicely aligned with equal width. The bodywidth keyword
also affects the non-text pop-up menus.

The font and fsize keywords affect only the title of a pop-up menu. The pop-up menu itself uses standard
system fonts.

Unlike color, line style, pattern, or marker pop-up menus, text pop-up menu controls can operate in two
distinct modes as set by the mode keyword’s value.

If the argument to the mode keyword is nonzero then it is considered to be the number of the menu item to
be the initial current item and displays the current item in the pop-up menu box. This is the selector mode.
There is often no need for an action procedure since the value of the current item can be read at any time
using the ControlInfo operation (page V-74).

Chapter III-14 — Controls and Control Panels

III-380

If mode is zero then the title appears inside the pop-up menu box, hence the name title-in-box mode. This
mode is generally used to select a command for the action procedure to execute. The current item has no
meaning except when the pop-up menu is activated and the selected item is passed to the action procedure.

The menu that pops up when the control is clicked is determined by a string expression that you pass as the
argument to the value keyword. For example:
PopupMenu name value="Item 1;Item 2;Item 3;"

To create the color, line style, pattern or marker pop-up menus, set the string expression to one of these
fixed values:
"*COLORPOP*"
"*LINESTYLEPOP*"
"*MARKERPOP*"
"*PATTERNPOP*"

For text pop-up menus, the string expression must evaluate to a list of items separated by semicolons. This
can be a fixed literal string or a dynamically-calculated string. For example:
PopupMenu name value="Item 1;Item 2;Item 3;"
PopupMenu name value="_none_;" + WaveList("*",";","")

It is possible to apply certain special effects to the menu items, such as disabling an item or marking an item
with a check. See Special Characters in Menu Item Strings on page IV-125 for details.

The literal text of the string expression is stored with the control rather than the results of the evaluation of
the expression. Igor evaluates the expression when the PopupMenu value=<value> command runs and
reevaluates it every time the user clicks on the pop-up menu box. This reevaluation ensures that dynamic
menus, such as created by the WaveList example above, reflect the conditions at click time rather than the
conditions that were in effect when the PopupMenu control was created.

When the user clicks and Igor reevaluates the string expression, the procedure that created the pop-up
menu is no longer running. Consequently, its local variables no longer exist, so the string expression can
not reference them. To incorporate the value of local variables in the value expression use the Execute oper-
ation:

String str = <code that generates item list> // str is a local variable
Execute "PopupMenu name value=" + str

Igor evaluates the string expression as if it were typed on the command line. You can not know what the
current data folder will be when the user clicks the pop-up menu. Consequently, if you want to refer to
objects in specific data folders, you must use full paths. For example:
PopupMenu name value=#"func(root:DF234:wave0, root:gVar)"

Because of click-time reevaluation, the pop-up menu does not automatically update if the value of the string
expression changes. Normally this is not a problem, but you can use the ControlUpdate operation (page V-79)
to force the pop-up menu to update. Here is an example:
NewPanel/N=PanelX
String/G gPopupList="First;Second;Third"
PopupMenu oneOfThree value=gPopupList // pop-up shows “First”
gPopupList="1;2;3" // pop-up is unchanged
ControlUpdate/W=PanelX oneOfThree // pop-up shows “1”

If the string expression can not be evaluated at the time the command is compiled, you can defer the eval-
uation of the expression by enclosing the value this way:
In some cases, the string expression can not be compiled at the time the PopupMenu command is compiled
because it references a global object that does not yet exist. In this case, you can prevent a compile-time error
by using this special syntax:
PopupMenu name value= #"pathToNonExistentGlobalString"

Chapter III-14 — Controls and Control Panels

III-381

If a deferred expression has quotes in it, they need to be escaped with backslashes:
PopupMenu name value= #"\"_none_;\"+UserFunc(\"foo\")"

The optional user defined action procedure is called after the user makes a selection from the popup menu.
Popup menu procedures have the following form:
Function PopMenuProc(pa) : PopupMenuControl

STRUCT WMPopupAction pa

switch(pa.eventCode)
case 2: // Mouse up

Variable popNum = pa.popNum // 1-based item number
String popStr = pa.popStr // Text of selected item
break

case -1: // Control being killed
break

endswitch
End

pa.popNum is the item number, starting from one, and pa.popStr is the text of the selected item.

For the color pop-up menus the easiest way to determine the selected color is to use the ControlInfo.

Creating SetVariable Controls
The SetVariable operation (page V-729) creates or modifies a SetVariable control. SetVariable controls are useful
for both viewing and setting values.

SetVariable controls are tied to numeric or string global variables, to a single element of a wave, or to an internal
value stored in the control itself. To minimize clutter, you should use internal values in most cases.

When used with numeric variables, Igor draws up and down arrows that the user can use to increment or dec-
rement the value.

You can set the width of the control but the height is determined from the font and font size. The width of
the readout area is the width of the control less the width of the title and up/down arrows. However, you
can use the bodyWidth keyword to specify a fixed width for the body (nontitle) portion of the control.

For example, executing the commands:
Variable/G globalVar=99
SetVariable setvar0 size={120,20},frame=1,font="Helvetica", value=globalVar

creates the following SetVariable control:

To associate a SetVariable control with a variable that is not in the current data folder at the time SetVariable
runs, you must use a data folder path:
Variable/G root:Packages:ImagePack:globalVar=99
SetVariable setvar0 value=root:Packages:ImagePack:globalVar

Unlike PopupMenu controls, SetVariable controls remember the current data folder when the SetVariable
command executes. Thus an equivalent set of commands is:
SetDataFolder root:Packages:ImagePack
Variable/G globalVar=99
SetVariable setvar0 value=globalVar

Also see SetVariable Controls and Data Folders on page III-370.

You can control the style of the numeric readout via the format keyword. For example, the string "%.2d"
will display the value with 2 digits past the decimal point. You should not use the format string to include
text in the readout because Igor has to read back the numeric value. You may be able to add suffixes to the
readout but prefixes will not work. When used with string variables the format string is not used.

Chapter III-14 — Controls and Control Panels

III-382

Often it is sufficient to query the value using ControlInfo and you there is no need for an action procedure.
If you want to do something every time the value is changed, then you need to create an action procedure of
the following form:
Function SetVarProc(sva) : SetVariableControl

STRUCT WMSetVariableAction sva

switch(sva.eventCode)
case 1: // Mouse up
case 2: // Enter key
case 3: // Live update

Variable dval = sva.dval
String sval = sva.sval
break

break
case -1: // Control being killed

break
endswitch

End

varName will be the name of the variable being used. If the variable is a string variable then varStr will
contain its contents and varNum will be set to the results of an attempt to convert the string to a number. If
the variable is numeric then varNum will contain its contents and varStr will be set to the results of a
number to string conversion.

If the value is a string, then sva.sval contains the value. If it is numeric, then sva.dval contains the value.
sva.isStr is 0 for numeric values and non-zero for string values.

When the user presses and holds in the up or down arrows then the value of the variable will be steadily
changed by the increment value but your action procedure will not be called until the user releases the
mouse button.

Creating Slider Controls
The Slider creates or modifies a slider control.

A slider control is tied to a numeric global variables or to a numeric internal value stored in the control itself. To
minimize clutter, you should use internal values in most cases. The value is changed by dragging the “thumb”
part of the control.

There are many options for labelling the numeric range such as setting the number of ticks.

You can also provide custom labels in two waves, one numeric and another providing the corresponding
text label. For example:
NewPanel
Make/O tickNumbers= {0,25,60,100}
Make/O/T tickLabels= {"Off","Slow","Medium","Fast"}
Slider speed,pos={86,28},size={74,73}
Slider speed,limits={0,100,0},value= 40
Slider speed,userTicks={tickNumbers,tickLabels}

Often it is sufficient to query the value using ControlInfo and you there is no need for an action procedure.
If you want to do something every time the value is changed, then you need to create an action procedure.
Igor calls the action procedure when the user drags the thumb, when the user clicks the thumb, and when
a procedure modifies the slider’s global variable, if any.

See the Slider operation on page V-745 for a complete description and more examples.

Chapter III-14 — Controls and Control Panels

III-383

Creating TabControl Controls
The TabControl creates or modifies a TabControl control. Tabs are used to group controls into visible and
hidden groups.

The tabs are numbered. The first tab is tab 0, the second is tab 1, etc.

A default tab control has one tab:

NewPanel/W=(150,50,650,400)
TabControl tb, tabLabel(0)="Settings", size={400,250}

You add tabs to the control by providing additional tab labels:
TabControl tb, tabLabel(1)="More Settings"

When you click on a tab, the control’s action procedure receives the number of the clicked-on tab.

The showing and hiding of the controls are accomplished by your action procedure. In this example, the
This, That, and Color controls are shown when the Settings tab is clicked, and the Multiplier checkbox is
hidden. When the More Settings tab is clicked, the action procedure makes the opposite occur.

The simplest way to create a tabbed user interface is to create an over-sized panel with all the controls
visible and outside of the tab control. Place controls in their approximate positions relative to one another.
By positioning the controls this way you can more easily modify each control until you are satisfied with
them.

Before you put the controls into the tab control, get a list of the non-tab control names:

Print ControlNameList("" ,"\r", "!tb") // all but “tb”
thisCheck
thatCheck
colorPop
multCheck
multVar

Determine which controls are to be visible in which tabs:

Write the action procedure for the tab control to show and hide the controls:
Function TabProc(tca) : TabControl

STRUCT WMTabControlAction &tca

switch (tca.eventCode)
case 2: // Mouse up

Variable tabNum = tca.tab // Active tab number

Tab 0: Settings Tab 1: More Settings

thisCheck multCheck

thatCheck multVar

colorPop

Chapter III-14 — Controls and Control Panels

III-384

Variable isTab0 = tabNum==0
Variable isTab1 = tabNum==1

ModifyControl thisCheck disable=!isTab0 // Hide if not Tab 0

ModifyControl thatCheck disable=!isTab0 // Hide if not Tab 0
ModifyControl colorPop disable=!isTab0 // Hide if not Tab 0

ModifyControl multCheck disable=!isTab1 // Hide if not Tab 1
ModifyControl multVar disable=!isTab1 // Hide if not Tab 1
break

endswitch

return 0
End

A more elegant method, useful when you have many controls, is to systematically name the controls inside
each tab using a prefix or suffix that is unique to that tab, such as tab0_thisCheck, tab0_thatCheck,
tab1_multVar. Then use the ModifyControlList operation to show and hide the controls. See the Modify-
ControlList operation for an example.

Assign the action procedure to the tab control:
TabControl tb, proc=TabProc

Click on the tabs to see whether the showing and hiding is working correctly.

Verify that the action procedure correctly shows and hides controls as you click the tabs. When this works
correctly, move the controls into their final positions, inside the tab control.

During this process, the "temporary selection" shortcut comes in handy. While you are in operate mode,
pressing Command-Option (Macintosh) or Ctrl+Alt (Windows) temporarily switchs to select mode, allowing
you to select and drag controls.

Save the panel as a recreation macro (Windows→Control→Window Control) to record the final control
positions. Rewrite the macro as a function that initially creates the panel:
Function CreatePanel()

DoWindow/K TabPanel
NewPanel/N=TabPanel/W=(596,59,874,175) as "Tab Demo Panel"
TabControl tb,pos={15,19},size={250,80},proc=TabProc
TabControl tb,tabLabel(0)="Settings"
TabControl tb,tabLabel(1)="More Settings",value= 0
CheckBox thisCheck,pos={53,52},size={39,14},title="This"
CheckBox thisCheck,value= 1,mode=1
CheckBox thatCheck,pos={53,72},size={39,14},title="That"
CheckBox thatCheck,value= 0,mode=1
PopupMenu colorPop,pos={126,60},size={82,20},title="Color"
PopupMenu colorPop,mode=1,popColor= (65535,0,0)
PopupMenu colorPop,value= #"\"*COLORPOP*\""
CheckBox multCheck,pos={50,60},size={16,14},disable=1
CheckBox multCheck,title="",value= 1
SetVariable multVar,pos={69,60},size={120,15},disable=1
SetVariable multVar,title="Multiplier",value=multiplier

End

See the TabControl operation on page V-876 for a complete description and examples.

Creating TitleBox Controls
The TitleBox operation creates or modifies a TitleBox control. The control’s text can be static or can be tied
to a global string variable. See the TitleBox operation on page V-897 for a complete description and exam-
ples.

Chapter III-14 — Controls and Control Panels

III-385

Creating ValDisplay Controls
The ValDisplay operation (page V-916) creates or modifies a value display control.

ValDisplay controls are very flexible and multifaceted. They can range from simple numeric readouts to
thermometer bars or a hybrid of both. A ValDisplay control is tied to a numeric expression that you provide
as an argument to the value keyword. Igor automatically updates the control whenever anything that the
numeric expression depends on changes.

ValDisplay controls evaluate their value expression in the context of the root data folder. To reference a data
object that is not in the root, you must use a data folder path, such as “root:Folder1:var1”.

Here are a few selected keywords extracted from the ValDisplay operation on page V-916:
size={width,height}
barmisc={lts, valwidth}
limits={low,high,base}

The size and appearance of the ValDisplay control depends primarily on the valwidth and size parameters
and the width of the title. However, you can use the bodyWidth keyword to specify a fixed width for the
body (non-title) portion of the control. Essentially, space for each element is allocated from left to right, with
the title receiving first priority. If the control width hasn’t all been used by the title, then the value readout
width is the smaller of valwidth points or what is left. If the control width hasn’t been used up, the bar is
displayed in the remaining control width:

Here are the various major possible forms of ValDisplay controls. Some of these examples modify previous
examples. For instance, the second bar-only example is a modification of the valdisp1 control created by the
first bar-only example.

Numeric Readout Only
// Default readout width (1000) is >= default control width (50)
ValDisplay valdisp0 value=K0

LED Display
// Create the three LED types
ValDisplay led1,pos={67,17},size={75,20},title="Round LED"
ValDisplay led1,limits={-50,100,0},barmisc={0,0},mode=1
ValDisplay led1,bodyWidth= 20,value= #"K1",zeroColor=(0,65535,0)

ValDisplay led2,pos={38,48},size={104,20},title="Rectangular LED"
ValDisplay led2,frame=5,limits={0,100,0},barmisc={0,0},mode=2
ValDisplay led2,bodyWidth= 20,value= #"K2"
ValDisplay led2,zeroColor= (65535,49157,16385)

ValDisplay led3,pos={60,76},size={82,20},title="Bicolor LED"
ValDisplay led3,limits={-40,100,-100},barmisc={0,0},mode= 2
ValDisplay led3,bodyWidth= 20,value= #"K3"

The Title

Bar Width =
Control Width
-Title Width

-Value Readout Width

Value
Readout

Width

Title Width

Control Width

Chapter III-14 — Controls and Control Panels

III-386

Bar Only
// Readout width = 0
ValDisplay valdisp1,frame=1,barmisc={12,0},limits={-10,10,0},value=K0
K0= 5 // halfway from base of 0 to high limit of 10.

The nice thing about a bar-only ValDisplay is that you can make it 5 to 200 points tall whereas with a
numeric readout, the height is set by the font sizes of the readout and printed limits.
// Set control height= 80
ValDisplay valdisp1, size={50,80}

Numeric Readout and Bar
// 0 < readout width (50) < control width (150)
ValDisplay valdisp2 size={150,20},frame=1,limits={-10,10,0}
ValDisplay valdisp2 barmisc={0,50},value=K0 // no limits shown

Optional Limits
Whenever the numeric readout is visible, the optional limit values may be displayed too.
// Set limits font size to 10 points. Readout widths unchanged.
ValDisplay valdisp2 barmisc={10,50}
ValDisplay valdisp0 barmisc={10,1000}

Optional Title
The control title steals horizontal space from the numeric readout and the bar, pushing them to the right.
You may need to increase the control width to prevent them from disappearing.
// Add titles. Readout widths, control widths unchanged.
ValDisplay valdisp2 title="Readout+Bar"
ValDisplay valdisp0 title="K0="

The limits values low, high, and base and the value of valExpr control how the bar, if any, is drawn. The bar
is drawn from a starting position corresponding to the base value to an ending position determined by the
value of valExpr, low and high. low corresponds to the left side of the bar, and high corresponds to the right.
The position that corresponds to the base value is linearly interpolated between low and high.

For example, with low = -10, high=10, and base= 0, a valExpr value of 5 will draw from the center of the bar
area (0 is centered between -10 and 10) to the right, halfway from the center to the right of the bar area (5 is
halfway from 0 to 10):

Chapter III-14 — Controls and Control Panels

III-387

You can force the control to not draw bars with fractional parts by specifying mode=3.

Killing Controls
You can kill (delete) a control from within a procedure using the KillControl operation (page V-408). This
might be useful in creating control panels that change their appearance depending on other settings.

You can interactively kill a control by selecting it with the arrow tool or the Select Control submenu and press
Delete.

Getting Information About Controls
You can use the ControlInfo operation (page V-74) to obtain information about a given control. This is
useful to obtain the current state of a checkbox or the current setting of a pop-up menu.

ControlInfo is usually used for control panels that have a Do It button or equivalent. When the user clicks
the button, its action procedure calls ControlInfo to query the state of each relevant control and acts accord-
ingly.

ControlInfo is generally not used for the other style of control panel in which the action procedure for each
control acts as soon as that control is clicked.

Updating Controls
You can use the ControlUpdate operation (page V-79) to cause a given control to redraw with its current
value. You would use this in a procedure after changing the value or appearance of a control to display the
changes before the normal update occurs.

Help Text for User-Defined Controls
Each control type has a help text property, set using the help keyword, through which you add a help tip.
Tips are limited to 255 bytes.
Here is an example:
Button button0 title="Beep", help={"This button beeps."}

The tip appears when the user moves the mouse over the control, if tool tips are enabled in the Help section
of the Miscellaneous Settings dialog.

Modifying Controls
The control operations create a new control if the name parameter doesn’t match a control already in the
window. The operations modify an existing control if the name does match a control in the window, but
generate an error if the control kind doesn’t match the operation.

5

high = 10base = 0low = -10
low limit

high limit

value of valExpr

Draws Blue Bar Draws Red Bar

bar “snakes”
up/down/up for
additional
resolution

Chapter III-14 — Controls and Control Panels

III-388

For example, if a panel already has a button control named button0, you can modify it with another
Button button0 command:
Button button0 disable=1 // hide

However, if you use a Checkbox instead of Button, you get a “button0 is not a Checkbox” error.

You can use the ModifyControl operation (page V-515) and ModifyControlList operation (page V-517) to
modify a control without needing to know what kind of control it is:
ModifyControl button0 disable=1 // hide

This is especially handy when used in conjunction with tab controls.

Disabling and Hiding Controls
All controls support the keyword “disable=d” where d can be:

Charts and ValDisplays do not change appearance when disable=2 because they are read-only.

SetVariables also have the noedit keyword. This is different from disable=2 mode in that noedit allows user input
via the up or down arrows but disable=2 does not.

Control Background Color
The background color of control panel windows and the area at the top of a graph as reserved by the ControlBar
operation (page V-73) is a shade of gray chosen to match the operating system look. This gray is used when the
control bar background color, as set by ModifyGraph cbRGB or ModifyPanel cbRGB, is the default pure white,
where the red, green and blue components are all 65535. Any other cbRGB setting, including not quite pure
white, is honored. However, some controls or portions of controls are drawn by the operating system and may
look out of place if you choose a different background color.

For special purposes, you can specify a background color for an individual control using the labelBack key-
word. See the reference help of the individual control types for details.

Control Structures
Control action procedures can take one of two forms: structure-based or an old form that is not recom-
mended. This section assumes that you are using the structure-based form.

The action procedure for a control uses a predefined, built-in structure as a parameter to the function. The
procedure has this format:

Function ActionProcName(s)
STRUCT <WMControlTypeActio>& s // <WMControlTypeActio> is one of the
… // structures listed below

End

0: Normal operation

1: Hidden

2: User input disabled

3: Hidden and user input disabled

Chapter III-14 — Controls and Control Panels

III-389

The names of the various control structures are:

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields in the future. Although the return value is not currently used, action functions
should always return zero.

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

You can use the same action procedure for different controls of the same type, for all the buttons in one
window, for example. Use the ctrlName field of the structure to identify the control and the win field to
identify the window containing the control.

Control Structure Example
This example illustrates the extended event codes available for a button control. The function prints various
text messages to the history area of the command window, depending what actions you take while in the
button area.

Function ControlStructureTest()
NewPanel
Button b0,proc= NewButtonProc

End

Structure MyButtonInfo
Int32 mousedown
Int32 isLeft

EndStructure

Function NewButtonProc(s)
STRUCT WMButtonAction &s

STRUCT MyButtonInfo bi
Variable biChanged= 0

StructGet/S bi,s.userdata
if(s.eventCode==1)

bi.mousedown= 1
bi.isLeft= s.mouseLoc.h < (s.ctrlRect.left+s.ctrlRect.right)/2
biChanged= 1

elseif(s.eventCode==2 || s.eventCode==3)
bi.mousedown= 0
biChanged= 1

elseif(s.eventCode==5)
print "Enter button"

elseif(s.eventCode==6)
print "Leave button"

endif

Control Type Structure Name

Button WMButtonAction

CheckBox WMCheckboxAction

CustomControl WMCustomControlAction

ListBox WMListboxAction

PopupMenu WMPopupAction

SetVariable WMSetVariableAction

Slider WMSliderAction

TabControl WMTabControlAction

Chapter III-14 — Controls and Control Panels

III-390

if(s.eventCode==4) // mousemoved
if(bi.mousedown)

if(bi.isLeft)
printf "L"

else
printf "R"

endif
else

printf "*"
endif

endif
if(biChanged)

StructPut/S bi,s.userdata // written out to control
endif

return 0
End

Control Structure eventMod Field
The eventMod field appears in the built-in structure for each type of control. It is a bitfield defined as fol-
lows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Control Structure blockReentry Field
Because of architectural differences, reentry of the action procedure occurs on Macintosh only in Igor6 and
does not occur at all in Igor7. Because reentry may be affected by internal changes in Igor or by operating
system changes, it may reappear as an issue in the future.

The blockReentry field appears in the built-in structure for each type of control. It allows you to prevent
Igor from sending your control action procedure another event while you are servicing the first event. This
is useful for action procedures that take a long time to service a click event. In such cases you typically do
not want to service a second click until you finish servicing the first. This technique prevents an accidental
double-click on a button from invoking a time-consuming procedure twice.

You tell Igor that you want to block further events until your action procedure returns by setting the block-
Reentry field to 1 when your action procedure is called:

Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

// Tell Igor not to invoke ButtonProc again until this invocation is finished
ba.blockReentry = 1
. . .

Igor tests this field before invoking your action procedure while it is already running from a previous invo-
cation. You do not need to test this field or reset it to 0 - just set it to 1 to block reentry.

EventMod Bit Meaning

Bit 0 A mouse button is down.

Bit 1 Shift key is down.

Bit 2 Option (Macintosh) or Alt (Windows) is down.

Bit 3 Command (Macintosh) or Ctrl (Windows) is down.

Bit 4 Contextual menu click occurred.

Chapter III-14 — Controls and Control Panels

III-391

Control Structure blockReentry Advanced Example
This example further illustrates the use of the blockReentry field. It is of interest only to those who want to
experiment with this issue.

The ReentryDemoPanel procedure below creates a panel with two buttons. Each button prints a message
in the history area when the action procedure receives the "mouse up" message, then pauses for two sec-
onds, and then prints another message in the history before returning. The pause is a stand-in for a proce-
dure that takes a long time.

The top button does not block reentry so, if you click it twice in quick succession, the action procedure is
reentered and you get nested messages in the history area.

The bottom button does block reentry so, if you click it twice in quick succession, the action procedure is
not reentered.

Because of architectural differences, reentry of the action procedure occurs on Macintosh only in Igor6 and
does not occur at all in Igor7. Because reentry may be affected by internal changes in Igor or by operating
system changes, it may reappear as an issue in the future.

Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

switch(ba.eventCode)
case 2: // mouse up

// Block bottom button only
ba.blockReentry= CmpStr(ba.ctrlName,"Block") == 0
print "Start button ",ba.ctrlName
Variable t0= ticks
do

DoUpdate
while(ticks < (t0+120))
Print "Finish button",ba.ctrlName
break

endswitch

return 0
End

Window ReentryDemoPanel() : Panel
PauseUpdate; Silent 1// building window...
NewPanel /K=1 /W=(322,55,622,255)
Button NoBlock,pos={25,10},size={150,20},proc=ButtonProc,title="No Block Reentry"
Button Block,pos={25,50},size={150,20},proc=ButtonProc,title="Block

Reentry"
End

User Data for Controls
You can store arbitrary data with a control using the userdata keyword. You can set user data for the following
controls: Button, CheckBox, CustomControl, ListBox, PopupMenu, SetVariable, Slider, and TabControl.

Each control has a primary, unnamed user data string that is used by default. You can also store an unlim-
ited number of additional user data strings by specifying a name for each one. The name can be any legal
standard Igor name.

You can retrieve information from the default user data using the ControlInfo operation (page V-74), which
returns such information in the S_UserData string variable. To retrieve any named user data, you must use
the GetUserData operation (page V-273).

Chapter III-14 — Controls and Control Panels

III-392

Although there is no size limit to how much user data you can store, it does have to be generated as part of
the recreation macro for the window when experiments are saved. Consequently, huge user data strings
can slow down experiment saving and loading

User data is intended to replace or reduce the usage of global variables for maintaining state information
related to controls.

Control User Data Examples
:Here is a simple example of a button with user data:
NewPanel
Button b0, userdata="user data for button b0"
Print GetUserData("","b0","")

Here is a more complex example.
Copy the following code into the procedure window of a new experiment and run the Panel0 macro. Then
click the buttons.
Structure mystruct

Int32 nclicks
double lastTime

EndStructure

Function ButtonProc(ctrlName) : ButtonControl
String ctrlName

STRUCT mystruct s1
String s= GetUserData("", ctrlName,"")
if(strlen(s) == 0)

print "first click"
else

StructGet/S s1,s
// Warning: Next command is wrapped to fit on the page.
printf "button %s clicked %d time(s), last click = %s\r",ctrlName, s1.nclicks,

Secs2Date(s1.lastTime, 1)+" "+Secs2Time(s1.lastTime,1)
endif
s1.nclicks += 1
s1.lastTime= datetime
StructPut/S s1,s
Button $ctrlName,userdata= s

End

Window Panel0() : Panel
PauseUpdate; Silent 1 // building window...
NewPanel /W=(150,50,493,133)
SetDrawLayer UserBack
Button b0,pos={12,8},size={50,20},proc=ButtonProc,title="Click"
Button b1,pos={65,8},size={50,20},proc=ButtonProc,title="Click"
Button b2,pos={119,8},size={50,20},proc=ButtonProc,title="Click"
Button b3,pos={172,8},size={50,20},proc=ButtonProc,title="Click"
Button b4,pos={226,8},size={50,20},proc=ButtonProc,title="Click"

EndMacro

Action Procedures for Multiple Controls
You can use the same action procedure for different controls of the same type, for all the buttons in one
window, for example. The name of the control is passed to the action procedure so that it can know which
control was clicked. This is usually the name of the control in the target/active window, which is what most
control operations assume.

Controls in Graphs
The combination of controls and graphs provides a nice user interface for tinkering with data. You can
create such a user interface by embedding controls in a graph or by embedding a graph in a control panel.
This section explains the former technique, but the latter technique is usually recommended. See Chapter
III-4, Embedding and Subwindows for details.

Chapter III-14 — Controls and Control Panels

III-393

Although controls can be placed anywhere in a graph, you can and should reserve an area just for controls
at the edge of a graph window. Controls in graphs operate much more smoothly if they reside in these
reserved areas. The ControlBar operation (page V-73) or the Control Bar dialog can be used to set the height
of a nonembedded control area at the top of the graph.

The simplest way to add a panel is to click near the edge of the graph and drag out a control area:

The background color of a control area or embedded panel can be set by clicking the background to exit any
subwindow layout mode, then Control-clicking (Macintosh) or right-clicking (Windows) in the background,

Click at the top, right, bottom,
or left edge of the graph.

Drag the dashed line to define the
inside edge of the embedded panel.

PRIGHT is the name of the resulting
embedded panel subwindow. The
label disappears in “operate” mode.

Adjust the position of the embedded
window by clicking the subwindow frame
and dragging its handles. The dashed
lines represent the edges of the plot and
graph areas, and the subwindow frame
snaps and attaches to them.

Chapter III-14 — Controls and Control Panels

III-394

and then selecting a color from the contextual menu’s pop-up color palette. See Control Background Color
on page III-388 for details.

The contextual menu adjusts the style of the frame around the panel.

You can use the same contextual menu to remove an embedded panel, leaving only the bare control area
underneath. Remove the control area by dragging the inside edge back to the outside edge of the graph.

Drawing Limitations
The drawing tools can not be used in bare control areas of a graph. If you want to create a fancy set of con-
trols with drawing tools, you have to embed a panel subwindow into the graph.

Updating Problems
You may occasionally run into certain updating problems when you use controls in graphs. One class of
update problems occurs when the action procedure for one control changes a variable used by a ValDisplay
control in the same graph and also forces the graph to update while the action procedure is being executed.
This short-circuits the normal chain of events and results in the ValDisplay not being updated.

You can force the ValDisplay to update using the ControlUpdate operation (page V-79). Another solution
is to use a control panel instead of a graph.

The ControlUpdate operation can also solve problems in updating pop-up menus. This is described above
under Creating PopupMenu Controls on page III-379.

Control Panels
Control panels are windows designed to contain controls. The NewPanel creates a control panel.

Drawing tools can be used in panel windows to decorate control panels. Control panels have two drawing
layers, UserBack and ProgBack, behind the controls and one layer, Overlay, in front of the controls. See
Drawing Layers on page III-68 for details.

A panel window’s background color can be set by Control-clicking (Macintosh) or right-clicking (Windows)
in the background and then selecting a color from the pop-up color palette. See Control Background Color
on page III-388 for details.

Embedding into Control Panels
You can embed a graph, table, notebook, or another
panel into a control panel window. See Chapter III-4,
Embedding and Subwindows for details. This tech-
nique is cleaner than adding control areas to a graph.
It also allows you to embed multiple graphs in one
window with controls.

Use the contextual menu while in drawing mode to
add an embedded window. Click on the frame of the
embedded window to adjust the size and position.

You can use a notebook subwindow in a control
panel to display status information or to accept
lengthy user input. See Notebooks as Subwindows in Control Panels on page III-86 for details.

Exterior Control Panels
Exterior subwindows are panels that act like subwindows but live in their own windows attached to a host
graph window. The host graph and its exterior subwindows move together and, in general, act as single
window. Exterior subwindows have the advantage of not disturbing the host graph and, unlike normal
subwindows, are not limited in size by the host graph.

Chapter III-14 — Controls and Control Panels

III-395

Exterior subwindows must be panels and the only host supported is a graph window.

To create an exterior subwindow panel, use NewPanel with the /EXT flag in combination with /HOST.

Floating Control Panels
Floating control panels float above all other windows, except dialogs. To create a floating panel, use New-
Panel with the /FLT flag.

Control Panel Preferences
Control panel preferences allow you to control what happens when you create a new control panel. To set
preferences, create a panel and set it up to your taste. We call this your prototype panel. Then choose Capture
Panel Prefs from the Panel menu.

Preferences are normally in effect only for manual operations, not for automatic operations from Igor pro-
cedures. This is discussed in more detail in Chapter III-18, Preferences.

When you initially install Igor, all preferences are set to the factory defaults. The dialog indicates which
preferences you have changed.

The preferences affect the creation of new panels only.

Selecting the Show Tools category checkbox captures whether or not the drawing tools palette is initially
shown or hidden when a new panel is created.

Chapter III-14 — Controls and Control Panels

III-396

Controls Shortcuts
Action Shortcut (Macintosh) Shortcut (Windows)

To show or hide a panel’s or
graph’s tool palette

Press Command-T. Press Ctrl+T.

To move or resize a user-
defined control without
using the tool palette

Press Command-Option and click the
control. With Command-Option still
pressed, drag or resize it.

Press Ctrl+Alt and click the control.
With Ctrl+Alt still pressed, drag or
resize it.

To add a user-defined
control without using the
tool palette

Press Command-Option and choose
from the Panel or Graph menu’s Add
Control submenu.

Press Ctrl+Alt and choose from the
Panel or Graph menu’s Add Control
submenu.

To modify a user-defined
control

Press Command-Option and double-
click the control.

This displays a dialog for modifying
all aspects of the control. If the control
is already selected, you don’t need to
press Command-Option.

Press Ctrl+Alt and double-click the
control.

This displays a dialog for modifying
all aspects of the control. If the control
is already selected, you don’t need to
press Ctrl+Alt.

To edit a user-defined
control’s action procedure

With the panel in modify mode (tools
showing, second icon from the top
selected) press the Control key and
click the control. This displays a
contextual menu with a “Go to
<action procedure>” item.

With the panel in modify mode (tools
showing, second icon from the top
selected) right-click the control. This
displays a contextual menu with a
“Go to <action procedure>” item.

To create an embedded
graph or table in the panel

With the panel in modify mode, press
the Control key and click the panel
background. Choose the subwindow
type from the resulting contextual
menu’s “New” submenu.

With the panel in modify mode,
right-click the panel background.
Choose the subwindow type from the
resulting contextual menu’s “New”
submenu.

To change an embedded
window’s border style

With the panel in modify mode, press
the Control key and click the embedded
window. Choose the border style from
the resulting contextual menu’s
“Frame” and “Style” submenus.

With the panel in modify mode, right-
click the embedded window. Choose
the border style from the resulting
contextual menu’s “Frame” and
“Style” submenus.

To remove an embedded
window

With the panel in modify mode, press
the Control key and click the embedded
window. Choose the Delete from the
resulting contextual menu.

With the panel in modify mode,
right-click the embedded window.
Choose the Delete from the resulting
contextual menu.

To eliminate a control area
at the edge of a graph

In modify mode or while pressing
Command-Option, click the inside
edge of the control area and drag it to
the outside edge of the graph.

In modify mode or while pressing
Ctrl+Alt, click the inside edge of the
control area and drag it to the outside
edge of the graph.

To nudge a user-defined
control’s position

Select the control and press arrow keys.

Press Shift to nudge faster.

Select the control and press arrow keys.

Press Shift to nudge faster.

	Controls and Control Panels
	Overview
	Modes of Operation

	Using Controls
	Buttons
	Charts
	Checkboxes
	CustomControl
	GroupBox
	ListBox
	Pop-Up Menus
	SetVariable
	Sliders
	TabControl
	TitleBox
	ValDisplays

	Creating Controls
	General Command Syntax
	Creating Button Controls
	Creating Chart Controls
	Creating Checkbox Controls
	Creating Custom Controls
	Creating GroupBox Controls
	Creating ListBox Controls
	Creating PopupMenu Controls
	Creating SetVariable Controls
	Creating Slider Controls
	Creating TabControl Controls
	Creating TitleBox Controls
	Creating ValDisplay Controls

	Killing Controls
	Getting Information About Controls
	Updating Controls
	Help Text for User-Defined Controls
	Modifying Controls
	Disabling and Hiding Controls
	Control Background Color
	Control Structures
	Control Structure Example
	Control Structure eventMod Field
	Control Structure blockReentry Field
	Control Structure blockReentry Advanced Example

	User Data for Controls
	Control User Data Examples

	Action Procedures for Multiple Controls
	Controls in Graphs
	Drawing Limitations
	Updating Problems

	Control Panels
	Embedding into Control Panels
	Exterior Control Panels
	Floating Control Panels

	Control Panel Preferences
	Controls Shortcuts

